Optimal risk sharing with general deviation measures

نویسندگان

  • Bogdan Grechuk
  • Michael Zabarankin
چکیده

An optimal risk sharing problem for agents with utility functionals depending only on the expected value and a deviation measure of an uncertain payoff has been studied. The agents are assumed to have no initial endowments. A set of Pareto-optimal solutions to the problem has been characterized, and a particular solution from the set has been suggested. If an equilibrium exists, the suggested solution coincides with an equilibrium solution. As special cases, the optimal risk sharing problem in the form of expected gain maximization and the problem with a linear mean-deviation utility functional including averse and coherent risk measures have been addressed. In the case of expected gain maximization, the existence of an equilibrium has been shown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Reinsurance: A Risk Sharing Approach

This paper proposes risk sharing strategies, which allow insurers to cooperate and diversify non-systemic risk. We deal with both deviation measures and coherent risk measures and provide general mathematical methods applying to optimize them all. Numerical examples are given in order to illustrate how efficiently the non-systemic risk can be diversified and how effective the presented mathemat...

متن کامل

Optimal Risk Sharing for Law Invariant Monetary Utility Functions

We consider the problem of optimal risk sharing of some given total risk between two economic agents characterized by law-invariant monetary utility functions or equivalently, law-invariant risk measures. We first prove existence of an optimal risk sharing allocation which is in addition increasing in terms of the total risk. We next provide an explicit characterization in the case where both a...

متن کامل

On Comonotonicity of Pareto Optimal Risk Sharing

We prove comonotonicity of Pareto-optimal risk allocations using risk measures consistent with the stochastic convex order. This extends result of Landsberger and Meilijson (1994) to risks X ∈ L and general probability spaces.

متن کامل

Mean-deviation analysis in the theory of choice.

Mean-deviation analysis, along with the existing theories of coherent risk measures and dual utility, is examined in the context of the theory of choice under uncertainty, which studies rational preference relations for random outcomes based on different sets of axioms such as transitivity, monotonicity, continuity, etc. An axiomatic foundation of the theory of coherent risk measures is obtaine...

متن کامل

Extending pricing rules with general risk functions

The paper addresses pricing issues in imperfect and/or incomplete markets if the risk level of the hedging strategy is measured by a general risk function. Convex Optimization Theory is used in order to extend pricing rules for a wide family of risk functions, including Deviation Measures, Expectation Bounded Risk Measures and Coherent Measures of Risk. For imperfect markets the extended pricin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals OR

دوره 200  شماره 

صفحات  -

تاریخ انتشار 2012