Optimal risk sharing with general deviation measures
نویسندگان
چکیده
An optimal risk sharing problem for agents with utility functionals depending only on the expected value and a deviation measure of an uncertain payoff has been studied. The agents are assumed to have no initial endowments. A set of Pareto-optimal solutions to the problem has been characterized, and a particular solution from the set has been suggested. If an equilibrium exists, the suggested solution coincides with an equilibrium solution. As special cases, the optimal risk sharing problem in the form of expected gain maximization and the problem with a linear mean-deviation utility functional including averse and coherent risk measures have been addressed. In the case of expected gain maximization, the existence of an equilibrium has been shown.
منابع مشابه
Optimal Reinsurance: A Risk Sharing Approach
This paper proposes risk sharing strategies, which allow insurers to cooperate and diversify non-systemic risk. We deal with both deviation measures and coherent risk measures and provide general mathematical methods applying to optimize them all. Numerical examples are given in order to illustrate how efficiently the non-systemic risk can be diversified and how effective the presented mathemat...
متن کاملOptimal Risk Sharing for Law Invariant Monetary Utility Functions
We consider the problem of optimal risk sharing of some given total risk between two economic agents characterized by law-invariant monetary utility functions or equivalently, law-invariant risk measures. We first prove existence of an optimal risk sharing allocation which is in addition increasing in terms of the total risk. We next provide an explicit characterization in the case where both a...
متن کاملOn Comonotonicity of Pareto Optimal Risk Sharing
We prove comonotonicity of Pareto-optimal risk allocations using risk measures consistent with the stochastic convex order. This extends result of Landsberger and Meilijson (1994) to risks X ∈ L and general probability spaces.
متن کاملMean-deviation analysis in the theory of choice.
Mean-deviation analysis, along with the existing theories of coherent risk measures and dual utility, is examined in the context of the theory of choice under uncertainty, which studies rational preference relations for random outcomes based on different sets of axioms such as transitivity, monotonicity, continuity, etc. An axiomatic foundation of the theory of coherent risk measures is obtaine...
متن کاملExtending pricing rules with general risk functions
The paper addresses pricing issues in imperfect and/or incomplete markets if the risk level of the hedging strategy is measured by a general risk function. Convex Optimization Theory is used in order to extend pricing rules for a wide family of risk functions, including Deviation Measures, Expectation Bounded Risk Measures and Coherent Measures of Risk. For imperfect markets the extended pricin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 200 شماره
صفحات -
تاریخ انتشار 2012